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A new mathematical concept, the nested summation symbol (NSS) has been developed. 
This concept is attached to a mathematical linear operator directly related to the summation 
symbols. After a discussion on its properties, we investigate the potential usefulness of this sym- 
bol in the developing of sequential and parallel computational algorithms, constituting a 
powerful link between mathematical formalism and high level languages programming. A NSS 
is well suited in order to express some kind of mathematical formulae and to implement them 
in any computational environment. In this sense, NSSs are directly related to artificial intelli- 
gence techniques. Nested sums are connected with generalized nested do loop (GNDL) struc- 
tures, a programming concept developed in our laboratory. This paper shows an application of 
the NSS. The NSS concept has been used to obtain in a compact form the expressions of the 
general energy and wavefunction corrections associated to the perturbation theory under the 
Brillouin-Wigner or the Rayleigh-Schr6dinger formalisms. 

1. I n t r o d u c t i o n  

Through our research on some quantum chemical topics, we have been facing 
the need to obtain useful mathematical  expressions, based on elementary mathema-  
tical concepts [1-3]. We asked ourselves about  the ability of  such a formulat ion to 
exhibit the attractiveness of  being simple, elegant, general and susceptible of  
immediate t ranslat ion to high level programming languages. Also, because mathe-  
matical  symbols will be ineluctably involved in such a framework,  other scientific 
areas as computat ional  chemistry and physics or applied mathematics  in general 
can be benefited too. 

In our intention was, with high priority, implicit the condit ion that  the final 
working schemes can serve as tools to build up convenient bridges between mathe-  
matical general formulae writing and computat ional ly  valid general program 
structures. Thus, programming techniques can also be assisted by means of  this 
process, as well as artifical intelligence [2] algorithms may  use partially the results 
of  our outline in order to increase the performances of  formulae generation and 
translat ion programs. 
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In this sense, here we treat the quantum chemical problem of finding the energy 
and wavefunction corrections of a system within a perturbational theory frame- 
work. However,, this problem transcends in various aspects the quantum chemical 
scene and can also be classified to belong to a more broad quantum mechanical cir- 
cle. In many text books [4-7] the development of the theory of perturbations and 
the associated methodology to obtain the corrections for the energy and the per- 
turbed wavefunction can be found. The resolvent technique [4,6] allows one to 
express in a formal manner all the corrections of the wavefunction and also those of 
the energy values. But also it is common to obtain explicit expressions for the first 
corrections of the energy. In fact, the perturbation technique is cumbersome 
because, as the order of the correction increases, a large number of summation sym- 
bols appearing in the explicit formulae for these corrections are needed [7,8]. NSS 
[1,2] override this problems as will be shown below. 

Some years ago one of us was interested in studying various aspects of general 
expressions of Rayleigh-Schr6dinger perturbation theory [9]. Here general formu- 
lae are presented expressing the energy corrections both in the BriUouin-Wigner 
and Rayleigh-Schr6dinger formulations and an algorithm is developed which 
allows to codify in a high level computer language the obtained formulae. 

2. Def in i t ion and properties o f  the N S S  

2.1. DEFINITION OF THE NSS 

The nested summation symbol concept corresponds to an operator attached to 
an arbitrary number of nested sums. In other words, a NSS represents a set of sum- 
mation symbols the number of which can be variable. In a general notation one 
can write a NSS as ~--~, (j = i, f ,  s, L) where the meaning of this convention corre- 
sponds to perform all the sums involved in the generation of all the possible values 
of the index vector j  under the fulfillment of the set of logical expressions collected 
in the components of the vector L. The elements of the vector j  have the following 
limits: 

{ik<~jk~k, if &~>0} or {ik>~jk>>.fk, if Sk~<0}; Vk = 1,n, (1) 

where the jk indices can be incremented or decremented respectively in steps of 
length sk. The index n is the dimension of  the NSS, that is: the number of summation 
symbols embedded in the operator, and thus the dimension of the involved vectors 
j ,  i, f and s. The set of all the vectors appearing as arguments of the NSS can be 
named parameters o f  the NSS. 

The logical vector L is of the type {/~(Li) }. The delta symbol corresponds to a logi- 
calKronecker delta (LKD). A LKD is a generalization of the Kronecker delta sym- 
bol. A L K D  symbol has a logical argument and this function can obtain two 
possible values: 1 if the argument is true, or 0 otherwise. In this manner, the indices 
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of the vector L are O's or l's. So, the convention of a NSS stands for the generation 
of all the possible forms of the index vector j attached to the logical vector 
L = 1 = (1 ,1 , . . . , 1 ) .  

A NSS possesses a computational implementation we have called a G N D L  
[1,2,10]. The Fortran code of the algorithm implementing a G N D L  can be found 
described as program 1 in appendix A below. The G N D L  algorithm constitutes the 
link between the mathematical notation of the NSS and the computer codification 
of this operator. 

When some parameters of the NSS are obvious or are unnecessary to be speci- 
fied, they are omitted when writing the NSS symbol. In this text, when the step vec- 
tor s is not specified, it must be assumed that its implicit value is the vector 1. If  
the logical vector L is not specified it means that all the possible forms of the vector 
j must be generated with any restriction. 

2.2. MATHEMATICAL NSS PROPERTIES 

(a) NSSs can be recognized as linear operators with respect to any general expres- 
sion placed at the right side of the symbol. At the same time, these expressions can 
also be studied as multivariate functions whose integer valued variables are the 
index vector elements: 

(b) A product of two NSSs is another NSS, or 

~ n ( J  = i , f , s , L )  )-~m(J' = i ' , f ' , s ' , L ' )  

-- " @ " =  " f @ f ' , s ~ s ~ , L @ L ' ) ,  (2) -- En+rn (J J i @ t', 

where the new index vectors are constructed using the direct sum of the original 
vectors appearing in the product. 

(c) The symbol )--~0 (J = i, f ,  s, L) can be made by convention equivalent to the 
unit operator. 

(d) The classical summation symbol ~f=i is a particular case of the NSS one, it 
can be written as )-'~1 (k -- i , f ,  1). 

(e) Einstein's convention, by which a set of nested sums are omitted from an 
expression, corresponds to a NSS like: )-'~n (J = 1, ml)  

3. Perturbation theory 

In order to define the notation which we will use from now on, let us consider 
the application of the perturbation theory to a system which has a perturbed Hamil- 
tonian H composed by an unperturbed one, H °, plus a perturbation operator ~ V, 
where )~ ~ 0, 

~r = ~ + ~V.  (3) 
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From here, the goal consists of finding the eigenvalues and the eigenvectors of 
the perturbed system, which we denote as the sets {El} and {1i)} respectively. That 
is, the target is focussed into solving the eigenvalue problem, 

n l i )  = Eili). (4) 

The eigenvalues and eigenvectors of the unperturbed Hamiltonian are assumed 
to be known, 

H°[0; i) = E}°)[0; i)  (5) 

and the ket [0; i) stands for the unperturbed eigenfunction of the ith state and E} °) 
is the corresponding energy. Also it is assumed that this system has an energy spec- 
trum with a simple structure. 

The perturbed energies for the ith state can be expressed as 
oo 

Ei = ~ AnE} n) (6) 
n = 0  

and the corresponding wavefunction is 
oo 

I i) = y ~  Anln; i ) ,  (7) 
n = 0  

where the index n signals the correction order in expressions (6) and (7). 
On the other hand, the nth order energy correction can be written using the 

form 

"1= <i;OlVln- 1;i); n > 0 ,  (8) 

provided that the orthogonality condition holds between the unperturbed state 
wavefunction and the corrections of any order, 

(i;0ln ; i )  = 6(n = 0), (9) 

where 6(n = 0) stands for a LKD. 

4. Br i l lou in-Wigner  per turbat ion theory 

In the Brillouin-Wigner perturbation formalism, the following identity is used 
[4]: 

H°ln;i)  + Win - 1;i) = Eiln;i) + E}n)[o;i). (10) 

Combining eqs. (8) and (10) it can be easily found that the nth order wavefunc- 
tion correction is given by [4] 
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[0;jl ) Uj, j~ Uj~j3... Uj,0 Z' n > 0 ~  (11) 

being the vector [0; i) defined in eq. (5) and where the terms U/j = (i; 0[ V[0;j) con- 
stitute the representation of the perturbation operator V within the characteristic 
bases set of the unperturbed Hamiltonian H °. In eq. (11) the primed summation 
symbols are attached to sums performed over all index values except the ith. 

The nth order correction for the energy takes the form [4] 

E, J, J2 J,-~ ( E i _ E ~ ? ) ) ( E i _ E ) O ) ) . . . ( E i _ E ) ? ) )  , n > l ,  (12) 

being E~ °) a n d  E} 1) = U/i defined in eqs. (5) and (8), respectively. 
Equations (11) and (12) can be rewritten using the NSS formalism. The correc- 

tions for the wavefunction take now the simple form: 

[ n ; i ) = E ( j = l , o o l , Z ) R i ( j ) ] O ; i ) ;  n > 0  (13) 
n 

and the corrections over the energies are expressed by eq. (8). 
In eq. (13) the vectors 1 and L are n-dimensional and L components are LKDs 

of the type {~(jk ~ i);Vk = 1, n}. The operator Ri(j) is written as 
n 

Ri(j) = I I  Zij ,  (14) 
p=l 

where Zp,q is a projector-like operator defined in turn as 

Zp,q = IO; q)(q;Olg(Ep - E~°)) -1 • (15) 

Thus, one can see NSS as a useful device which permits to write eqs. (11) and 
(12) in a compact manner. Also it allows one to easily obtain these formulae by 
means of the NSS straightforward implementation, the GNDL algorithm, as it is 
shown in appendix B. 

In fact, the Brillouin-Wigner notation is not very adequate for many problems. 
This is so because in order to obtain the perturbed wavefunction, it is necessary to 
use the corresponding perturbed energy. The perturbed energy is not known in 
advance in many cases although an iterative algorithm can be employed, using eq. 
(8) combined with (13). The method starts the computation with a trial perturbed 
energy and then iterates over eqs. (8) and (13) until a selfconsistent situation is 
reached. Appendix B shows a practical implementation of this algorithm. 

5. General Rayleigh-Schr6clinger perturbation theory 

As it can be seen in eq. (13), the NSS notation permits to write some equations 
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in an elegant and compact manner. In fact, this is due to the fact that NSS opens a 
new door in order to obtain algebraic expressions. In this sense we propose the use 
of NSS as an ideal framework to construct a really general perturbation theory 
scheme. The following discussion will try to prove this. 

Let us write a perturbed Hamiltonian by a set of k independent perturbation 
operators using the following expression involving a NSS: 

H = Y'~k(P = O,K)A(p)H(p) ,  (16) 

where the vector s and L of the NSS are omitted, assuming that s = 1 and all the 
possible forms of vectorp have to be generated. In eq. (16) the first parameter vec- 
tor values gives the unperturbed Hamiltonian H(0), thus the convention A(0) = 1 
must hold, and any other vector index p structure generates a set of perturbation 
operators {H(p);p # 0}. The final parameter vector K contains the maximal order 
of the perturbation, which can be different for every operator. The symbol A(p) is 
an element of the scalar set of perturbation parameters. Both H(p) and A(p) can be 
considered products of perturbation operators and the attached parameters. 

That is: 

k 

H ~ )  = H Hi ~') (17) 
i=1 

and 

k 

A(p) = H A~'" (18) 
i=l 

The adequate technique here is to substitute the usual Rayleigh-SchrSdinger 
scalar perturbation order by a vector perturbation order n. 

The perturbed energies and wavefunctions for the ith system state can be 
expressed in a similar way as in scalar perturbation theory, 

and 

Ei = ~_,k(n = O, cx31)A(n)Ei(n) , 

li) = ~ k ( n  = 0, ool)A(n)ln; i ) ,  

(19) 

(20) 

the expressions (19) and (20) being the generalization of eqs. (6) and (7), respec- 
tively. 

Substituting eqs. (16), (19) and (20) into the perturbed SchrSdinger secular equa- 
tion produces the nth order equation: 

~--~k (P @ q, 6(p + q = n))H(p)lq; i) 

= ~ k ( P  ~ q, ~5(p + q = n))Ei(p)lq; i ) ,  (21) 
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which when n = 0 yields the unperturbed Schr6dinger equation. 
Thus, the nth order energy correction for the ith system's state can be written as 

Ei(n) = ~-'~-k (P = 0, n, 6(p ~ 0))(i; 0ln(p)ln - p ;  i) (22) 

provided that the orthogonality condition 

(i; OLp; i) = 6(p = 0) (23) 

holds between the unperturbed state wavefunction and their perturbation correc- 
tions up to any order. 

The wavefunction corrections can be obtained similarly through a resolvent 
.operator technique which will be discussed below. The nth wavefunction correction 
for the ith state of the perturbed system can be written in the same manner as it is 
customary when developing some scalar perturbation theory scheme: by means of 
a linear combination of the unperturbed state wavefunctions, excluding the ith 
unperturbed state. That is 

In; i )  = ~'~'a;,[O; i) .  (24) 
J 

Using expression (24) into eq. (21), after some straightforward manipulation, 
one can obtain the equivalent n~e in order to construct the nth order wavefunction 
correction 

In;i) = Ek(,p, 6(,p ~ O ) ) R i ( p ) l n - p ; i ) ,  (25) 

where a set of resolvent operators {Ri(p)} for the ith state are easily defined as fol- 
lows: 

R,(.p) = Z , ( O ) ( H ( p ) -  Ei(p)) (26) 

with the weighted projector sum Zi(O) defined in turn as 

Z,(0) = ~-~'(Ei(O) - Ej(0))-IPj(0), (27) 
J 

{Pj (0)} being the set of projectors over the unperturbed states, 

ej(0) = 10;j>(/;0[. (28) 

In this context eqs. (22) and (25) can be considered forming a completely general 
perturbation theory for nondegenerate systems. 

6. Conc lus ions  

A mathematical  device, the NSS, which can be related to artificial intelligence 
techniques, has been defined and applied in order to solve a concrete quantum che- 
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mical problem. This symbol is related to computer formulae generation. Not  only 
can the present perturbation theory problem be solved by means of the use ofNSSs: 
many other applications of such symbols can be found in mathematical applica- 
tions as well as in mathematical chemistry in particular [1,2]. 

Apart of being able to simplify typographical structures, the NSS symbols con- 
stitute the basic elements of a completely general framework, allowing to write 
mathematical formulae, in such a manner that immediate translation to any high 
level programming language is feasible, producing a complete general code, which 
can be kept sequential ofparallelized in a simple manner, as it is explained in appen- 
dix A below. 

Appendix  A. Computa t iona l  implementa t ion  o fa  G N D L  

GENERAL CONSIDERATIONS 

In standard high level language programmation the dimension of the NSS, n, sig- 
nals the number of nested do loops which are necessary to reproduce the structure 
in a computational environment. But the mathematical usefulness of this entity can 
be easily recognized when the particular characteristic of this symbolic unit is ana- 
lyzed: the involved vector parameters could be chosen with arbitrary and variable 
dimensions. There are many scientific and mathematical formulae which will bene- 
fit of this property, when written in a paper or computationally implemented. 

NSS symbolism constitutes a link between mathematical formalism and pro- 
gram implementation techniques, because successive generation o f j  index vector 
elements can be programmed in a general but simple way under any high level lan- 
guage. This can be achieved using a unique "do" or "for" loop statement con- 
struct, which is general and independent of the dimension of the involved nested sums. 
This kind of programming structure constitutes the GNDL algorithm. 

NSS have not a direct translation to the usual high level languages. Present day 
compilers or standard language rules ignore such an interesting feature, see for 
example the practical final form of the standard Fortran 90 language [11]. Even 
high level language compilers have no capacity of processing more than a limited 
number of classical do loops in a nest, for example VAX Fortran [12] has a limit of 
20 nested do loops. Thus, the GNDL structure is a good candidate to circumvent 
these limitations in any compiler. 

It looks simple to introduce GNDL in the family of repetitive sentences found 
in high level languages. So we feel that a claim in this direction to language and 
compiler builders can be made here. Some immediate computational benefits in 
order to construct really general programs may be obtained. 

In order to show in a practical manner the computational implementation of a 
NSS, program 1 represents a Fortran source code corresponding to the NSS struc- 
ture. The NSS implementation using a GNDL generates all the forms of vector j  
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obeying the logical expressions constituting the components of  the vector L. 
According to this, program 1 generates the indices of the n-dimensional NSS 
~--~n (j = i, f ,  s, L), where the components of  the vector L are {6(jk 7 ~ lk); Vk = 1, n}. 
The dimension n and the initial, final and step index values collected in the vectors 
i, f ,  and s have not been specified and the question mark symbol stands for their 
possible values. These values depend on the concrete application given to the 
algorithm. Here it is assumed that the step vector s has all its components positive 
definite. 

Application is a called procedure where the n nested loops converge and where 
their leading indices can be arbitrarily used in the desired internal application. Thej 
index values generation is sequential but the execution of Application can be per- 
formed into separate CPUs. In this manner, the full computation can be paralle- 
lized if desired. In fact, this is a general algorithm, enabling to perform a parallel 

Program 1: NSS implementation. G N D L  Fortran code 

* The innermost loop corresponds to the index k = n. 

Parameter (n=?) 
Integer j (n), i(n), f(n), s(n), l(n) 

* < NSS starting parameter values> 
do k=l, n 

i(k) =? 
f(k) =? 
,(k) =? 
/(k) =? 
if (i(k). eq. l(k)) i(k)=i(k)+s(k) 
j (k) =i(k) 

end do 

* <Start nestedsumprocedure> 

k=n 
do while (k. gt. 0) 

if (j(k).gt.f(k)) then 
j(k)=i(k) 
k=k-I 

else 
call Application (n, j) 
k=n 

end if 
if (k. gt. 0) then 

j(k) =j(k) +s(k) 
if Q(k). eq. l (k))j(k)=](k)+s(k) 

end if 
end do 
END 

* < End of NSS Program. > 
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Application implementation if the nature of the problem asks for such a process 
and the available hardware allows to run it in this manner. A previous tentative 
description on GNDL,  in a sequential programming framework, was initially 
made by Carb6 and Bunge [10]. 

Also, another G N D L  structure can be put inside Application, constituting the 
first step towards a generalized nest of GNDL program structure. We have devel- 
oped some programming experience on this subject. Construction of a generalized 
nest of GNDL,  aside of being a good no trivial programming exercise, as far as 
practice has shown to us, it also constitutes a very good test to seek flaws, poten- 
tially present, into Fortran and other high level language compilers. 

Various application examples can be obtained upon request from the authors. 
Some Fortran source codes on combinatorial analysis, product of an arbitrary 
number of matrices and determinant evaluation in a parallel transputer [13] envir- 
onment are available. 

Appendix  B. Numer ica l  example 

Here, we describe the Fortran source code listed in program 2. This function con- 
stitutes a simple codification of the iterative algorithm described above in order to 
compute the energy corrections of a perturbed system. The program works within 
the Brillouin-Wigner formalism and uses eq. (12). The code computes the ith eigen- 
value of an m-dimensional perturbed matrix. The arguments of the function are 
the following: the matrix dimension (m), the eigenvalue number to be computed (i), 
the maximal order correction which one wants to achieve (k), the eigenvalues of 

P rog ram 2: Brillouin-Wigner formula implementation 

DOUBLE PRECISION FUNCTION BRIWIG (m, i, k, E, U) 
implicit double precision (A-H, O-Z) 
parameter (maxd=9, maxorder=15) 
dimension E (maxd) , U(maxd, maxd) ! Energies and matrix elements 
dimensionj (0: maxorder), EE (maxd) 
j (0)=0 
mn=k-I 
ini=l 
if (i. eq. i) ini=2 

Define initial Energy differences 

Ener=E(i)+U(i, i) 
Ener_old=0.0D0 
do k=l, m 

EE(k)=Ener-E(k) 
end do 

Starting iterations 
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Iter=O ! Iteration counter 
Criterion=0.0D0 ! Finish iteration criterion 
DO WHILE (dabs(l.0D0-Criterion). gt. i. 0d-12. and. Iter. it. 99) 

Corrections: Zeroth&First order correction 

Ener=E(i) 
Ener=Ener+U(i, i) 

! Zerothorder correction 
! Adds first order correction 

Successive Correction orders 

do n=l, mn 
En=0.0D0 

! The order of the correction is n+l 
!Energy correction 

NSS of dimension n: Inititalvalues of NSS indices 

do k=l, n 
j(k)=ini 

end do 

jn=n 
do while (jn. gt. 0) 

if (j(jn). gt. m) then 
j (jn) =ini 
jn=jn-I 

else 

Correction Computation. 

Denominator=l.0D0 
Terms_Uij=U(i, j(1)) 
do k=l, n-i 

Denominator=Denominator*EE(j(k)) 
Terms_Uij=Terms_Uij*U(j(k), j(k+l)) 

end do 
Terms_Uij=Terms_Uij*u(j(n), i) 
Denominator=Denominatoz*EE(j(n)) 
En=En+Terms_Uij/Denominatoz 
jn=n 

end if 
j(jn)=j(jn)+l 
if (j(jn). eq. i) j (jn)=j(jn)+l 

end do 

Ener=Ener+En 

Redefine Energy differences 

do k=l, m 
EE(k)=Enez-E(k) 

end do 
end do 
Iter=Iter+l 
Criterion=Ener_old/Ener 
Ener_old=Ener 

END DO !Newiteration 
if (Iter. ge. 99) stop 'Non convergence'. 
BRIWIG=Ener 
END 

!Adds Correction 

! Ener must tend to the perturbed energy 
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the unper turbed  system (E) and the matr ix elements (U) consti tuting the represen- 
tat ion of  the per turbat ion operator  in the characteristic basis of  the eigenvectors 
of  the unper turbed matrix.  The returned value is the per turbed eigenvalue a t tached 
to the ith eigenvector. 

The routine stops if there is a zero division or no convergence is encountered.  
The code has been tested using as unper turbed matrix a Hilbert  matr ix  (14) and the 
per turbat ion was constructed adding the scalar 0.01 over the/411 matrix element. 
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